4,080 research outputs found

    An X-ray Study of Two B+B Binaries: AH Cep and CW Cep

    Get PDF
    AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8~d and 2.7~d, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B~stars. {\em Chandra} ACIS-I observations were obtained to determine X-ray luminosities. AH~Cep was detected with an unabsorbed X-ray luminosity at a 90\% confidence interval of (9−33)×1030(9-33)\times 10^{30} erg s−1^{-1}, or (0.5−1.7)×10−7LBol(0.5-1.7)\times 10^{-7} L_{\rm Bol}, relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW~Cep was a surprising non-detection. For CW~Cep, an upper limit was determined with LX/LBol<10−8L_X/L_{\rm Bol} < 10^{-8}, again for the combined components. One difference between these two systems is that AH~Cep is part of a multiple system. The X-rays from AH~Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH~Cep on the short orbital period of the inner B~stars.Comment: Astrophysical Journal, accepte

    Whispering gallery modes in open quantum billiards

    Full text link
    The poles of the S-matrix and the wave functions of open 2D quantum billiards with convex boundary of different shape are calculated by the method of complex scaling. Two leads are attached to the cavities. The conductance of the cavities is calculated at energies with one, two and three open channels in each lead. Bands of overlapping resonance states appear which are localized along the convex boundary of the cavities and contribute coherently to the conductance. These bands correspond to the whispering gallery modes appearing in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma

    Magnetic properties of iron pnictides from spin-spiral calculations

    Full text link
    The wave-vector (q) and doping dependences of the magnetic energy, iron moment, and effective exchange interactions in LaFeAsO, BaFe2As2, and SrFe2As2\ are studied by self-consistent LSDA calculations for co-planar spin spirals. For the undoped compounds, the calculated total energy, E(q), reaches its minimum at q corresponding to stripe anti-ferromagnetic order. In LaFeAsO, this minimum becomes flat already at low levels of electron-doping and shifts to an incommensurate q at delta=0.2, where delta is the number of additional electrons (delta>0) or holes (delta<0) per Fe. In BaFe2As2 and SrFe2As2, stripe order remains stable for hole doping down to delta=-0.3. Under electron doping, on the other hand, the E(q) minimum shifts to incommensurate q already at delta=0.1.Comment: 4 pages, 2 figures, International Conference on Magnetism, Karlsruhe, July 26 - 31, 200

    S-matrix theory for transmission through billiards in tight-binding approach

    Full text link
    In the tight-binding approximation we consider multi-channel transmission through a billiard coupled to leads. Following Dittes we derive the coupling matrix, the scattering matrix and the effective Hamiltonian, but take into account the energy restriction of the conductance band. The complex eigenvalues of the effective Hamiltonian define the poles of the scattering matrix. For some simple cases, we present exact values for the poles. We derive also the condition for the appearance of double poles.Comment: 29 pages, 9 figures, submitted to J. Phys. A: Math. and Ge

    Dynamics of open quantum systems

    Get PDF
    The coupling between the states of a system and the continuum into which it is embedded, induces correlations that are especially large in the short time scale. These correlations cannot be calculated by using a statistical or perturbational approach. They are, however, involved in an approach describing structure and reaction aspects in a unified manner. Such a model is the SMEC (shell model embedded in the continuum). Some characteristic results obtained from SMEC as well as some aspects of the correlations induced by the coupling to the continuum are discussed.Comment: 16 pages, 5 figure

    Magnetic excitations in multiferroic LuMnO3 studied by inelastic neutron scattering

    Full text link
    We present data on the magnetic and magneto-elastic coupling in the hexagonal multiferroic manganite LuMnO3 from inelastic neutron scattering, magnetization and thermal expansion measurements. We measured the magnon dispersion along the main symmetry directions and used this data to determine the principal exchange parameters from a spin-wave model. An analysis of the magnetic anisotropy in terms of the crystal field acting on the Mn is presented. We compare the results for LuMnO3 with data on other hexagonal RMnO3 compounds.Comment: 7 pages, 8 figures, typo correcte

    Effective Hamiltonian and unitarity of the S matrix

    Full text link
    The properties of open quantum systems are described well by an effective Hamiltonian H{\cal H} that consists of two parts: the Hamiltonian HH of the closed system with discrete eigenstates and the coupling matrix WW between discrete states and continuum. The eigenvalues of H{\cal H} determine the poles of the SS matrix. The coupling matrix elements W~kcc′\tilde W_k^{cc'} between the eigenstates kk of H{\cal H} and the continuum may be very different from the coupling matrix elements Wkcc′W_k^{cc'} between the eigenstates of HH and the continuum. Due to the unitarity of the SS matrix, the \TW_k^{cc'} depend on energy in a non-trivial manner, that conflicts with the assumptions of some approaches to reactions in the overlapping regime. Explicit expressions for the wave functions of the resonance states and for their phases in the neighbourhood of, respectively, avoided level crossings in the complex plane and double poles of the SS matrix are given.Comment: 17 pages, 7 figure

    Conductance of Open Quantum Billiards and Classical Trajectories

    Full text link
    We analyse the transport phenomena of 2D quantum billiards with convex boundary of different shape. The quantum mechanical analysis is performed by means of the poles of the S-matrix while the classical analysis is based on the motion of a free particle inside the cavity along trajectories with a different number of bounces at the boundary. The value of the conductance depends on the manner the leads are attached to the cavity. The Fourier transform of the transmission amplitudes is compared with the length of the classical paths. There is good agreement between classical and quantum mechanical results when the conductance is achieved mainly by special short-lived states such as whispering gallery modes (WGM) and bouncing ball modes (BBM). In these cases, also the localization of the wave functions agrees with the picture of the classical paths. The S-matrix is calculated classically and compared with the transmission coefficients of the quantum mechanical calculations for five modes in each lead. The number of modes coupled to the special states is effectively reduced.Comment: 19 pages, 6 figures (jpg), 2 table
    • …
    corecore